Investigating pathogens and diseases in flying foxes

Kevin J. Olival, PhD

olival@ecohealthalliance.org

Phnom Penh, Cambodia 17-19 October 2013

SEABCRU Flying Fox Workshop

Local conservation. Global health.

Today's Outline

- 1) Overview: bats and emerging disease
- 2) Reconciling Conservation and Public Health
- 3) Nipah virus, disease ecology field example
- 4)Personal Protection while doing bat research

Emerging Zoonoses from Bats

- Growing number of zoonotic, bat-borne viruses recognized (e.g. Ebola, Marburg, Nipah, Hendra, SARS, MERS)
- 70% of emerging diseases from animals are from wildlife

Yet, Greater need for viral ECOLOGY, and conservationminded approaches

Increase in Bat Virus Research

Public Health/ Virology Community

Bat Conservation Community

2010 NASBR

'One Health'

Spatial Analysts

Veterinarians

Human

Epidemiologists

Public Health

Virologists

MDs/clinicians

Farmers

Hunters

Domestic Animal

Climate scientists

Anthropologists

Wildlife

Ecologists

Evolutionary Biologists

Population geneticists

Mathematical modelers

Ecological disruption SARS-IIKE Henipavirus de novirus Ex. . Filovirus Herpesvirus

Agricultural Expansion

2ºOVINS Lyssavirus Rotavirus Arenavirus

Bunyavirus

Flavivirus

Bushmeat 'Viral Diversity'

Disease emergence in people is most often linked with human disturbance of natural ecosystems!

Nipah Virus and Bat Ecology

- What is the prevalence of Nipah virus?
 - Spatial / Temporal variation in infection?
- Bat abundance?
- Movement patterns?

Nipah virus in Malaysia, 1998-1999

Most human cases worked on infected pig farms

- 800 pig-farms demolished
- 36,000 jobs lost
- > \$300 (US) million exports lost

Conduct on-the-ground disease ecology and conservation research – example Nipah virus

DISPATCHES

Characterization of Nipah Virus from Naturally Infected Pteropus vampyrus Bats, Malaysia

Sohayati A. Rahman, Sharifah S. Hassan,
Kevin J. Olival, Maizan Mohamed, Li-Yen Chang,
Latiffah Hassan, Norsharina M. Saad,
Syamsiah A. Shohaimi, Zaini C. Mamat,
M.S. Naim, Jonathan H. Epstein, Arshad S. Suri,
Hume E. Field, Peter Daszak,
and the Henipavirus Ecology Research Group¹

The Study

We conducted a prospective cohort study from June 2004 through June 2005 on a group of 17 *P. vampyrus* flying foxes captured in 2 locations, using a nonrandom sampling method. Fourteen bats (73%) were from Lenggong (5°07′01.1″N, 100°58′32.7″E), and 3 bats (27%) were from Kampung Gajah (4°10′35″N, 100°55′37″E), Malaysia. This project was approved by the Wildlife Trust Institutional Animal Care and Use Committee, New York, New York, USA, and Department of Wildlife and National Park Malaysia research committee.

Because bats were included in the study in a staggered manner, each bat was monitored for antibody titer against NiV and virus excretion for 5 to 12 months. Bats were quarantined at Taiping Zoo (4°54′N, 100°45′E), Taiping, Malaysia, in a wire net (1 inch square) enclosure, 5 m long × 4 m wide × 3 m high; with a roof and cement floor.

Archives Home > Archives

vampyrus 2004-2005

Published: Wednesday August 26, 2009 MYT 6:55:00 PM

Malaysia urged to ban flying fox hunting

KUALA LUMPUR: The world's largest species of fruit bat, also known as the flying fox, could be driven to extinction in Malaysia as early as 2015 unless the government bans its hunting, a scientific study published Wednesday said.

Flying foxes, which have a wingspan of up to five feet (1.5 meters), eat fruit and nectar. In the process they disperse seeds around a vast area and pollinate trees, making them key to the well-being of the rainforest ecosystem in this part of Southeast Asia.

They are commonly hunted for food, medicine and sport in Malaysia and many other countries in Southeast Asia.

Epstein, Olival, et al. 2009

Years

Develop low-cost, non-lethal interventions strategies for zoonoses

- e.g. Working with Bangladesh government and icddr,b to implement on-the-ground disease interventions for Nipah virus
- Protective bamboo skirts
- Prevent Nipah virus but also 50+ other potential viral zoonoses

FLYING FOXES HAVE ECONOMIC VALUE

Flying foxes are essential for the pollination, dispersal, and genetic diversity of economically important fruit plants.

•Some plants such as durian and petai rely entirely on flying foxes for pollination. Trade in durian in Southeast Asia is worth

about US \$120 million per year (B 3.6 billion).

•Flying foxes carry seeds between areas as they

digest food, which is important in forest regeneration. This also helps maintain

genetic diversity in wild plants such as banana and mango. Without genetic diversity, economically important cultivated plants could become more susceptible to disease.

• Flying foxes sustain ecosystems through their guano. In 1983, guano mined for

fertilizer from Khao Chong Pran Cave in Ratchaburi Province earned roughly US \$53,000 (B 1.6 million) annually in

support of a local monastery and school, but later on, as the flying fox population declined, profits dropped.

"Last but not least, the major reason for protecting fruit bats is that they are beautiful, gentle, intelligent living creatures that deserve to live."

-Flying Fox Conservation Fund

THREATS TO FLYING FOXES

Humans are the greatest threat to flying foxes. We destroy their habitats: roosts and feeding areas are lost as forests are cut down and caves

are blasted, disturbed, and closed. Flying foxes are hunted for food and traditional medicines, even though there is no scientific evidence

that medicine made from flying foxes work. Hunting has caused the extinction of several species of fruit-eating bats.

NIPAH VIRUS (NiV)

There is strong evidence that the emergence of bat-related viral infection communicable to humans and animals has been attributed to the loss of natural habitats of bats.

Nipah virus (NiV) is a deadly infectious disease that can infect flying foxes, livestock, and humans. Flying foxes have been identified as natural reservoirs of NiV, and infected bats shed virus in their saliva and excreta. In 1999, direct contact with infected pigs was identified as the predominant mode of transmission to humans in a large outbreak in Malaysia.

Risk of infection increases when people consume either flying foxes or the livestock that live close to flying fox roosts, or when they eat fruits and date palm sap that flying foxes also have eaten. NiV has been detected in Thailand, but by keeping a safe distance from flying foxes, risk of infection and spread can be minimized.

Absence

Current distribution

Daszak et al. PNAS 2012

Nipah virus, bat reservoir Distribution and Climate Change

Future distribution Ensemble of 20 GCM's

Risk Assessment

Personal Protective Equipment training e.g. Bangladesh Nipah investigations

Sampling wildlife for urine, feces, saliva, blood = routes of human exposure

Blood, saliva, feces, urine

Develop and use minimally-invasive viral sampling protocols

manua

INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES

Balancing ecology, conservation and public health interest

*PPE Recommendations for bat handling

- Dedicated clothing
- Gloves
- Face mask
- Goggles or glasses

*See SEABCRU recommendation protocols for minimum PPE

Example: Hands-on Training in Thailand

Bat capture and handling

Sample collection

Before and after PPE training

White Nose Syndrome, >6 Million Bats Dead

Acknowledgements, Funding

Thanks to SEABCRU for travel support
ALL EcoHealth Alliance staff, interns, and in-country partners
USAID Emerging Pandemic Threat Program
NIH NIAID Non-EID Biodefense R01-Al079231
NIH ARRA award 3R01TW005869-06S1
NIH/NSF, Ecology of Infectious Disease award 2R01-TW005869
Department of Defense, Defense Threat Reduction Agency

