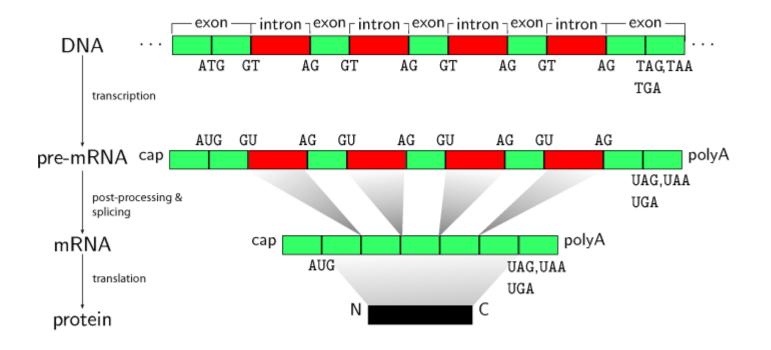
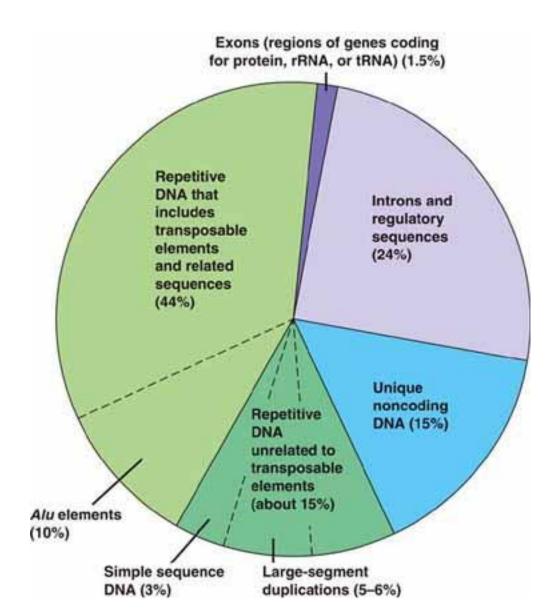

Genetic analyses for taxonomy

- 1. Some background details
- 2. Current and future sequencing
- 3. Collecting and storing genetic resources
- 4 Why do phylogenetic trees sometimes disagree with other datasets?

1. Some background details


DNA is transcribed into mRNA, which is translated into amino acids

Central Dogma: DNA -> RNA -> Protein



Genes are made up of introns and exons. Introns can be very long and are removed by splicing in gene expression.

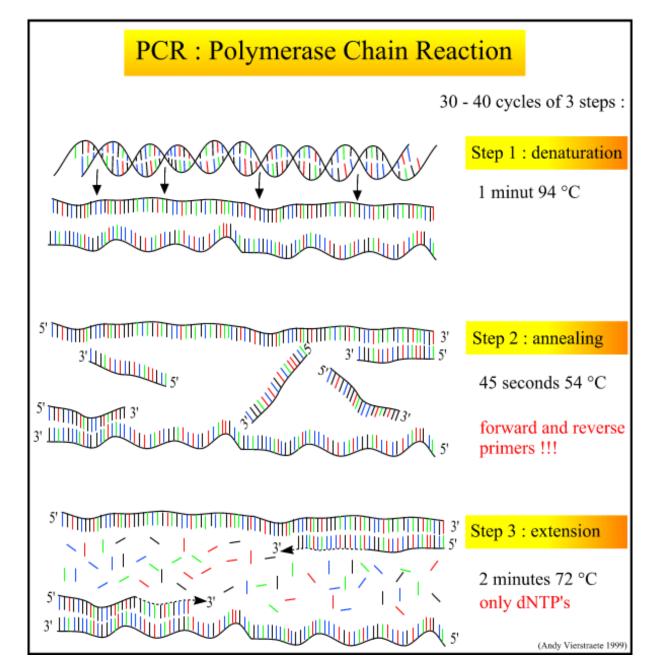
This leads to concatenated exons for each gene (equivalent to the coding sequence or "CDS")

As well as introns within genes, there are large gaps of non-coding sequence between genes. In fact, only around 1% of the mammalian genome is made up of coding DNA)

Exons (coding parts of the gene) tend to be relatively conserved across taxa. Introns are more variable. Below we can see part of an exon and an intron.

🙆 👩 🙈 😕 🙆 Inbox - Mozill... 🙆 XEM London -... 🐼 TMC 1P 1VK

Short 🔰 🐓 BioEdit Seque... 🛛 🐓

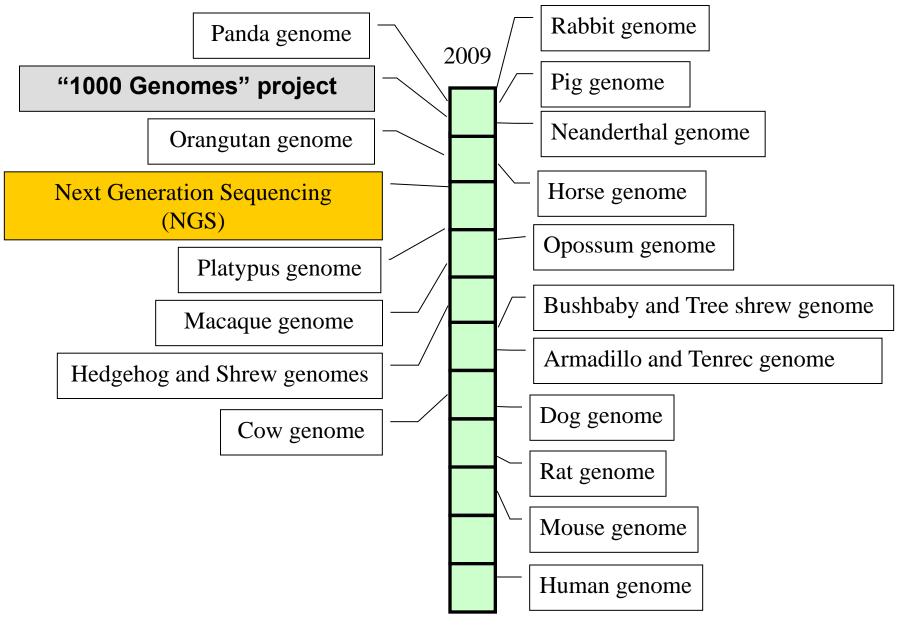

BioEdit Segu

D + I +	Ę	a 👸	¥.	ar ô	ŝŧ				TAC TAC TCT				Å}	GA CA	T !	A C				6	₽	м	I			_	croll beec			Ir -	🖣 fas	l I]	
T T T	•	ŦŦ	TT	' ' 10			T T '	T T	1 ' 20	T T	•	TT	τ.	• I 3(• • 7	T T	•	T T	$\frac{1}{4}$	• • n	τT	1		•	••	T T	• •		י ا 60	- T 1	· • ।	T T	T T	17 70
TAT	TC	тт	-		GA	T(3G,			GA	тт	ΑA				4 <mark>G</mark> (- <mark>T</mark>	AA			TA	A	'G'I			A TU	G	CO		GC	CA	n -1	CA	
																															CA			
TAT	тC	TT	G <mark>C</mark> .	AT 1	AA	(T	3G <mark>/</mark>	ЧT	GΑ	G₽	тт	AA	. <mark>C</mark> 2	<u>a a</u> (CA.	4 <mark>G</mark> G	эт.	AA	GA	$\mathbf{C}\mathbf{T}$	ТG	- 2	ста	ר <mark>כ</mark> י!	GG	AT:	[G]	l C C	тт	GC	CA.	r –	AA	GA
TAT	тC	TT	G <mark>C</mark> ,	AT 1	A A	(T	3G <mark>/</mark>	ЧT	GA	G₽	TT	AA	C2	۹A(CA.	۹G(ЭT.	AA	G <mark>C</mark>	CT	ΤG	- 2	стл	ר <mark>כ</mark> י	GG	AT:	[G]	l C C	TT	GC	CA <mark>C</mark> A	r –	AA	GA
TAT																							_								CA.			
TAT																																		
																															CA.			
TAT																																		
TAT																																		
TAT TAT																																		
TAT																																	$\frac{CC}{CA}$	
TAT																																		
TAT																														GC	CA	-	CA	G <mark>л</mark>
				стл																								- <mark>C</mark> 1		GC	CA	[–	CA	GТ
TAT	тс	TT	G <mark>C</mark>	CT1	'GA	۲ ⁽	3G <mark>/</mark>	чT	GΑ	GA	TT	AA	. <mark>C</mark> 2	4A(CA.	۹Ġ(эт.	AA	AC	тт	ТG	- 2	r <mark>G</mark> 1	' <mark>C</mark> T	GG	AT:	'G1	r <mark>c</mark> 1	'TT	GJ	'CA'	г–	AA	G <mark>C</mark>
TAT	т	TT	G <mark>C</mark>	CT7	<mark>'</mark> GA	۲ <mark>۲</mark>	3G <mark>/</mark>	ЧT	GΑ	G₽	тт	AA	. <mark>C</mark> 2	4A(CA.	۹G(эт.	<u>aa</u>	AA	ТG	ΤA	- 2	r <mark>G</mark> 1	C.I.	GG	TT:	r G1	l C C	<mark>T</mark> G	G <mark>C</mark>	GA	г–	GΑ	G <mark>C</mark>
TAT	тC	TT	G <mark>C</mark>	CT1	l GA	(T	3G <mark>/</mark>	ЧT	GΑ	G٨	TT	AA	. <mark>C</mark> 2	a a (CA.	4GC	ΞT.	AA.	A <mark>C</mark>	тт	ΤG	- 2	Г <mark>G</mark> Л	ר <mark>ס</mark> י	GG	AT:	[G]	r <mark>C</mark> 1	TT	G	' <mark>C</mark> A	r –	AA	G <mark>C</mark>
TAT																																		
TAT																															CA			
																															(CA			
CAT																															CA.			
CAT	TC		GC	<u>- "1"</u>	IG A	<mark>с.Т.</mark> (5G.	<u>ч</u> .Т,	GA	GÅ	тт	AA		4.4(CA.	4G(3 <mark>'L'</mark>	GA	G'l'	CĽ	AG	- (3G <mark>1</mark>		"I'G	<u>A'l''</u>	'G'	CC	1.1	G	'CA'	L'-	CA	G-

Exonic region

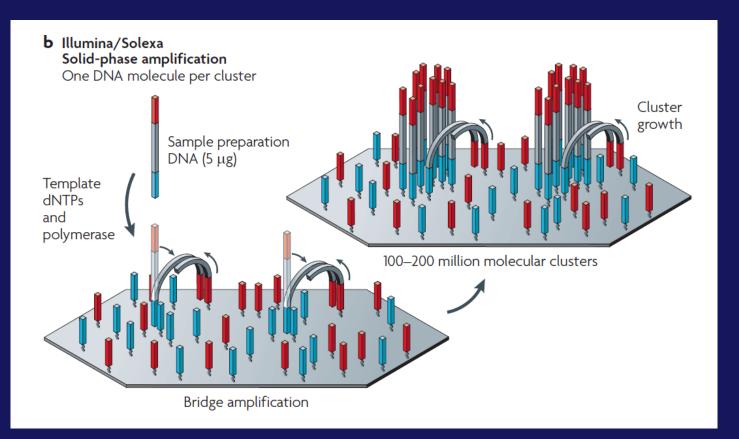
Intronic region

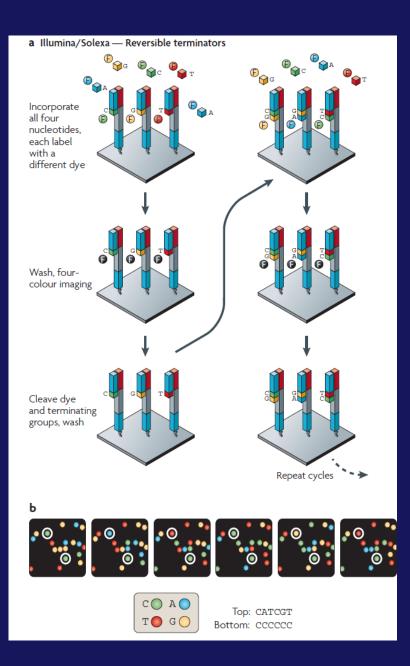
We use PCR to amplify DNA



2. Current and future sequencing

Until 2007 we all used Sanger sequencing. Several large genome projects were conducted at huge expense


In 2007 several companies released technologies, termed "Next Generation Sequencing" (shotgun sequencing of small reads)

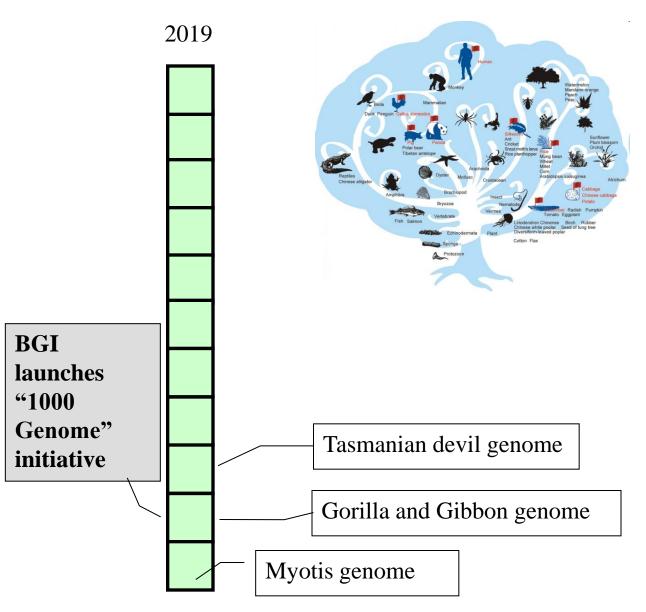

This means more and more genomes are now being produced

Next generation sequencing

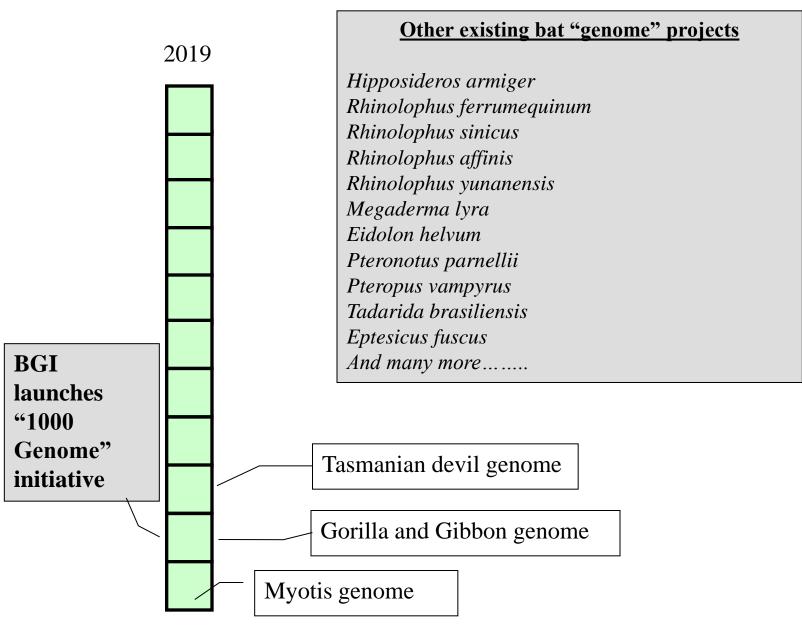
- Based on shotgun sequencing
- Adaptors containing universal priming sites are ligated to ends of the DNA fragment
- DNA templates amplified clonally to get clusters

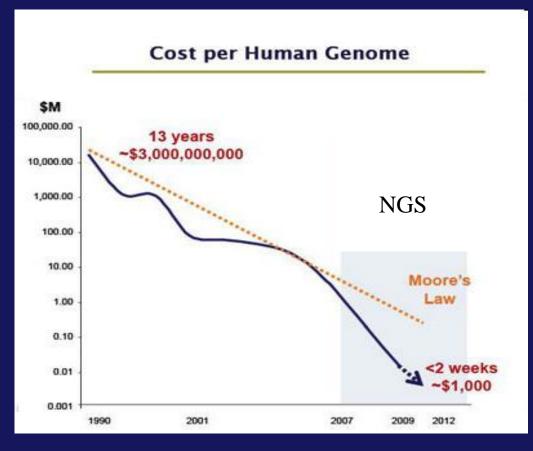
- Fluoro-labelled dNTPS washed over the strand
- Each time a photo is taken

NGS by Illumina



Up to 6.5 Gb per day 640 million paired-end reads Up to 25 Gb per day 2 billion paired-end reads


~60x coverage of a human genome in a single run for under \$10,000


<u>In Process</u> Tibetan antelope Polar bear Camel Puma

Next Hyrax Potto Wombat Chinese dolphin Donkey Porpoise Asian lion Beluga whale Giraffe Aardwolf Whale Mole-rat Hamster

2010

Affordability?

•Gene sequencers outpace microchips

Numerous companies promise genomes for 1K USD within just 2-5 years
This means these methods will be within our financial reach.

•Some predict a genome will be less than 100 dollars in a few years.

Within one or two years from now

 Single molecule approaches (this could mean our museum samples are useful for genome sequencing)

• Ultra portable sequencers (could be useful for field work)

Oxford Nanopore's "minION"

So how will we benefit from these methods?

Development of new DNA markers

Examples of using genome comparative data

Future of phylogenomics and population genomics

Development of new DNA markers I

- Microsatellite discovery by mining published genome data

Shikano *et al.* (2010) *BMC Genomics* **11**: 334 Sequenced genomes for microsatellite marker development in nine-spined sticklebacks

- Microsatellite development by low coverage genome sequencing

Abdelkrim (2009) *BioTechniques* 46: 185-192 blue duck DNA \rightarrow 454 sequencing \rightarrow 17215 reads \rightarrow >200 loci \rightarrow 24 primer sets

Species	Class	Number of reads	Minimum number of repeats*	Number of microsatellites detected	Number of potential primer pairs
Maritrema novaezealandensis1	Trematoda	31120	5,4,4	676	46
Motuweta isolata ²	Insecta	52059	4,4,4	472	134
Powelliphanta augusta ²	Gastropoda	35196	6,6,6	2541	170

Development of new DNA markers II

- Non-coding and coding DNA from mining genome data

"Transmembrane channel-like protein 1" gene

		.0 20	30	40	50	60	70	80	90 —
TMC1 Horse	TATTCTTGCC	TTGATGGATGA	GA <mark>TT</mark> AACAACAA	GGTAAGTGTTA	ATGTCTGGAT	TGTCCTTGCCA	I-CAGCATGTT	ACT	
TMC1 Human			GA <mark>TT</mark> AACAACAA						
TMC1 Chimp			GA <mark>TT</mark> AACAACAA						
TMC1 Orang			GA <mark>TT</mark> AACAACAA						
TMC1 Macaque			GA <mark>TT</mark> AACAACAA						
TMC1 Bushbaby			GA <mark>TT</mark> AACAA <mark>T</mark> AA						
TMC1 Mouselemur			GA <mark>TT</mark> AACAACAA						
TMC1 Tarsier			GA <mark>TT</mark> AACAACAA						
TMC1 BottDolphin			GA <mark>TT</mark> AACAACAA						
TMC1 Cow			GA <mark>TT</mark> AACAACAA						
TMC1 Alpaca			GA <mark>TT</mark> AACAACAA						
TMC1 Dog	TATTCTTGCC	TTGATGGATGA	GA <mark>TT</mark> AACAACAA	GGTAAGTATTA	-TATCTGGAT	TGTTCTTGGCA	I-CCATGT-	GTT	
TMC1 Cat			GA <mark>TT</mark> AACAACAA						
TMC1 Tenrec			AA <mark>TT</mark> AACAACAA						
TMC1 Armadillo	TATTCTTGCA	TTGATGGATGA	GA <mark>TT</mark> AACAACAA	GG TAAGCTTTA	-TGTCTGCAI	TGTCTTTGCCA	C-CAGTGTATT	GTT	
TMC1 Sloth	TATTCTTGCC	TTGATGGATGA.	AA <mark>TC</mark> AACAACAA	GG <mark>TAAGCATT</mark> G		CTTTGCCA	I-CAGIGIGIT	ATT	
TMC1 Hare	TATTCTTGCC	TTGATGGATGA	GA <mark>TT</mark> AACAACAA	GGTAAACTTTG	- TGTCTGGAT	TGTCTTTGTCA	I-AAGCATATC	<u>111</u> -	
TMC1 Pika			GA <mark>TT</mark> AACAACAA						
TMC1 Rabbit			GA <mark>TT</mark> AACAACAA						
TMC1 Shrew			GA <mark>TT</mark> AACAACAA						
TMC1 Kangrat			GA <mark>TT</mark> AACAACAA						
TMC1 Rockhyrax			GA <mark>TT</mark> AACAACAA						
TMC1 Rat			GA <mark>TT</mark> AACAACAA						
TMC1 Mouse	CATTCTCGCC	TTGATGGATGA	GA <mark>TT</mark> AACAACAA	GG <mark>TGAGTCT</mark> AG	-GG <mark>TC</mark> TTGAT	TGT <mark>CC</mark> TTGT <mark>CA</mark>	I - <mark>CAG - I GI GC</mark>	CAG	

- Non-coding and coding DNA from mining genome data

"Transmembrane channel-like protein 1" gene

	10 20 30	40 50 60 70 80
TMC1 Horse	ATTCTTGCCTTGATGGATGAGATTAACAACAAC	GTGTTAATGTCTGGATTGTCCTTGCCAT-CAGCATGTTACT
TMC1 Human	ATTCTTGCATTAATGGATGAGATTAACAACAAC	AGCCTTG-TTTCTGGATTGTCCTTGCCAT-AAGAGTGTTGTT
TMC1 Chimp	ATTCTTGCATTAATGGATGAGATTAACAACAA	AGACTTG-TTTCTGGATTGTCCTTGCCAT-AAGAGTGTTGTT
TMC1 Orang	ATTCTTGCATTAATGGATGAGATTAACAACAAC	ACCTTC-TTTCTGGATTGTCCTTGCCAT-AAGAGTGTTGTT
TMC1 Macaque	ATTCTTGCATTAATGGATGAGATTAACAACAAC	AGCCTCG-TTTCTGGATTGTCCTTGCCAT-AAGAGTGTTGTT
TMC1 Bushbaby	ATTCTTAAAATGATGGATGAGATTAACAATAA	AGCCT-G-TGTCTGGACTGTCCTTGCTTT-CAGTGTT
TMC1 Mouselemur	ATTCTTGCCTTGATGGATGAGATTAACAACAAC	AGCCT-G-TGTCTGGATTGTCCTTGCCAT-CAGTGTT
TMC1 Tarsier	ATTCTTGCCTTAATGGATGAGATTAACAACAA	AGCCTGG-TGTCTGGATTGTTCTTGCCAT-TAAAGTGTTGTT
TMC1 BottDolphin		ATCTTG-TGTCTGGATTGTCCTTGCCAT-CAGCATGTTGTT
TMC1 Cow	ATTCTTGCCCTGATGGATGAGATTAACAACAAC	ATCTTG-TGTCTGGATTGTCCTTGCCAT-CAGCACATTGTT
TMC1 Alpaca	ATTCTTGCCTTGATGGATGAGATTAACAACAAC	AGTCTTG-TGTCTGGGTTGTCCTTGCCAT-CA
TMC1 Dog	ATTCTTGCCTTGATGGATGAGATTAACAACAAC	AGTATTA-TATCTGGATTGTTCTTGGCAT-CC-ATGT-GTT
TMC1 Cat	ATTCTTGCCTTGATGGATGAGATTAACAACAA	AGTCTTG-TATCTGGATTGTTCTTGGCAT-CAGAGTGTTATT
TMC1 Tenrec	ATTCTTGCCTTGATGGATGAAATTAACAACAA	ACCATG-TGGCTGC-TTGTCCTTACTTTATCAGTGTT
TMC1 Armadillo	ATTCTTGCATTGATGGATGAGATTAACAACAA	AGCTTTA-TGTCTGCATTGTCTTTGCCAC-CAGTGTATTGTT
TMC1 Sloth	ATTCTTGCCTTGATGGATGAAATCAACAACAA	GCATTG-TCTTTGCCAT-CAGTGTGTTATT
TMC1 Hare	ATTCTTGCCTTGATGGATGAGATTAACAACAAC	ACTTTG-TGTCTGGATTGTCTTTGTCAT-AAGCATATCTT-
TMC1 Pika	ATTCTTGCCTTGATGGATGAGATTAACAACAA	AAATGTA-TGTCTGGTTTGTCCTGGCGAT-GAGCATGTCTT-
TMC1 Rabbit	ATTCTTGCCTTGATGGATGAGATTAACAACAA	ACTTTG-TGTCTGGATTGTCTTTGTCAT-AAGCATATTTTT
TMC1 Shrew	ATTCTTGCTCTGATGGATGAGATTAACAACAA	AGTCTGG-TGTCAAAATTGCCCTTGCCAT-CAGCTGGATGTT
TMC1 Kangrat	ATTCTTGCTCTGATGGATGAGATTAACAACAA	AGTCTTTGTCTGGAATGTCCTTGCCAC-CAG-TGTATTAC
TMC1 Rockhyrax	ATTCTGGCCCTGATGGATGAGATTAACAACAA	ACTTTG-TGTCCAATTGATCCT-GACAT-TAG-TGTGTGAA
TMC1 Rat	ATTCTCGCCTTGATGGATGAGATTAACAACAA	AGTCTAG-GGTCGCGGTTGTCTTTGCCAT-CAG-TGTGCCAA
TMC1 Mouse	ATTCTCGCCTTGATGGATGAGATTAACAACAAC	AGTCTAG-GGTCTTGATTGTCCTTGTCAT-CAG-TGTGCCAG

90

"Exon-primed intron-crossing sequences" (EPICs)

			•			
÷	10 20		40 50	60	70	80 90
TMC1 Horse	TATTCTTGCCTTGATGGATGA	.GA <mark>TT</mark> AA <mark>C</mark> AACAAGG <mark>T</mark> AAG	TGTTAATGTCTGGATTG	TCCTTGCCAT	- <mark>CAGCA</mark> TGTTAC	2
TMC1 Human	TATTCTTGCATTAATGGATGA					
TMC1 Chimp	TATTCTTGCATTAATGGATGA	GA <mark>TTAACAAC</mark> AAGG <mark>T</mark> AAG.	ACTTG-TTTCTGGATTG	TCCTTGCCAT	-AAGAGTGTTGT!	2
TMC1 Orang	TATTCTTGCATTAATGGATGA					
TMC1 Macaque	TATTCTTGCATTAATGGATGA	.GA <mark>TT</mark> AA <mark>CAAC</mark> AAGG <mark>T</mark> AAG	CCTCG-TTTCTGGATTG	TCCTTGCCAT	-AAGAGTGTTGT!	2
TMC1 Bushbaby	TATTCTTAAAATGATGGATGA					
TMC1 Mouselemur	TATTCTTGCCTTGATGGATGA					
TMC1 Tarsier	TATTCTTGCCTTAATGGATGA					
TMC1 BottDolphin	TATTCTTGCCTTGATGGATGA					
TMC1 Cow	TATTCTTGCCCTGATGGATGA					2
TMC1 Alpaca	TATTCTTGCCTTGATGGATGA	GA <mark>TT</mark> AACAACAAGG <mark>T</mark> AAG	T <mark>CTT</mark> G-TGTCTGGGTTG	TCCTTGCCAT	- <mark>CA</mark> <u></u>	-
TMC1 Dog	TATTCTTGCCTTGATGGATGA	.GA <mark>TT</mark> AA <mark>CAAC</mark> AAGG <mark>T</mark> AAG	TATTA-TATCTGGATTG	TTCTTGGCAT	- <mark>CC</mark> <mark>AT</mark> GT-GT	2
TMC1 Cat	TATTCTTGCCTTGATGGATGA					
TMC1 Tenrec	TATTCTTGCCTTGATGGATGA	AA <mark>TT</mark> AACAACAAGG <mark>T</mark> AAA	CCATG-TGGCTGC-TTG	TCCTTACTTT	ATCAGTGT	2
TMC1 Armadillo	TATTCTTGCATTGATGGATGA	.GA <mark>TT</mark> AACAACAAGG <mark>T</mark> AAG	CTTTA-TGTCTGCATTG	TCTTTGCCAC	- <mark>CAGTGTATTGT</mark>	2
TMC1 Sloth	TATTCTTGCCTTGATGGATGA					
TMC1 Hare	TATTCTTGCCTTGATGGATGA					
TMC1 Pika	TATTCTTGCCTTGATGGATGA					
TMC1 Rabbit	TATTCTTGCCTTGATGGATGA					
TMC1 Shrew	TATTCTTGCTCTGATGGATGA					
TMC1 Kangrat	TATTCTTGCTCTGATGGATGA					
TMC1 Rockhyrax	TATTCTGGCCCTGATGGATGA	GA <mark>TT</mark> AACAACAAGG <mark>T</mark> AAA	CTTTG-TGTCCAATTGA	TCCT-GACAT	- <mark>TAG- T</mark> G <mark>TGTGA</mark> A	4
TMC1 Rat	CATTCTCGCCTTGATGGATGA	GA <mark>TT</mark> AACAACAAGG <mark>T</mark> AAG	TCTAG-GGTCGCGGTTG	TCTTTGCCAT	- <mark>CAG-T</mark> G <mark>T</mark> GCCA <i>i</i>	<u>a</u>
TMC1 Mouse	CATTCTCGCCTTGATGGATGA	GA <mark>TTAACAAC</mark> AAGG <mark>T</mark> GAG	TCTAG-GGTCTTGATTG	TCCTTGTCAT	- <mark>CAG-T</mark> G <mark>T</mark> GCCA	<u>-</u>
						-

Nuclear protein coding loci (NPCL)

AATTGTTGTTCCATT

÷	10	20	30	40	50	60	70	80	 90
TMC1 Horse	TATTCTTGCCTTGAT								
TMC1 Human	TATTCTTGCATTAA1								
TMC1 Chimp	TATTCTTGCATTAA1								
TMC1 Orang	TATTCTTGCATTAAT								
TMC1 Macaque	TATTCTTGCATTAAT								
TMC1 Bushbaby	TATTCTTAAAATGAT								
TMC1 Mouselemur	TATTCTTGCCTTGA1								
TMC1 Tarsier	TATTCTTGCCTTAA1	GGATGAGATI	AACAACAAGG <mark>T</mark>	AAGCC <mark>T</mark> GG	-TGTCTGGATT	GTTCTTGCCA	T-TAAAGTGT	IGTT	
TMC1 BottDolphin	TATTCTTGCCTTGAT								
TMC1 Cow	TATTCTTGCCCTGAT							I'G'I'I'	
TMC1 Alpaca	TATTCTTGCCTTGAT TATTCTTGCCTTGAT	GGATGAGATT		AAGTCTTG		GTCCTTGCCA			
TMC1 Dog	TATTCTTGCCTTGAT								
TMC1 Cat	TATTCTTGCCTTGAT								
TMC1 Tenrec	TATTCTTGCCTTGAT TATTCTTGCATTGAT								
TMC1 Armadillo TMC1 Sloth	TATTCTTGCCTTGAT	CCATCA AATO	AACAACAAGGI	AAGCIIIA AACCATTC					
TMC1 SIOCH TMC1 Hare	TATTCTTGCCTTGAT								
TMC1 Hare	TATTCTTGCCTTGAT								
TMC1 Rabbit	TATTCTTGCCTTGAT								
TMC1 Shrew	TATTCTTGCTCTGAT								
TMC1 Kangrat	TATTCTTGCTCTGAT								
TMC1 Rockhyrax	TATTCTGGCCCTGAI								
TMC1 Rat	CATTCTCGCCTTGAI								
TMC1 Mouse	CATTCTCGCCTTGA1	GG <mark>AT</mark> GAGA <mark>T</mark> I	AACAACAAGG <mark>T</mark>	gag <mark>tct</mark> ag	-GG <mark>TC</mark> TTGATT	GTCCTTGTCA	I- <mark>CA</mark> G- <mark>TGT</mark> G	CCAG	
								-	

•

We need to be prepared for these new methods and technologies.

It is important to think about how we maximise the potential benefit of our samples, particularly for our ongoing collecting and research

Collecting and storing genetic resources

The best approaches to collecting and storing bat material for genetic analysis will depend on the needs of the samples

Very often we cannot predict the future technologies so it is important to take care now to safeguard the value of our material in the future

Most genetic analyses are based on <u>DNA</u> Uses of DNA work include:

Sequencing for phylogenetic and phylogeographic analyses

Species identification via bar coding (COI) and other loci

Species ID etc

Microsatellite genotyping

Functional genes

Advantages of DNA

Relatively stable

Evenly distributed across all cells (same result from muscle versus wing versus liver)

Advantages of using introns as a source of variation

Disadvantages of DNA

Introns and inter-genic areas can also make primer design difficult

Exonic within genes areas might be far apart from each other

Lots of Intergenic sequence

Work on <u>RNA</u> is becoming more important

RNA can be studied to determine expression in different tissue types

No introns or Intergenic regions, so get more gene sequence per dollar

Disadvantages of RNA

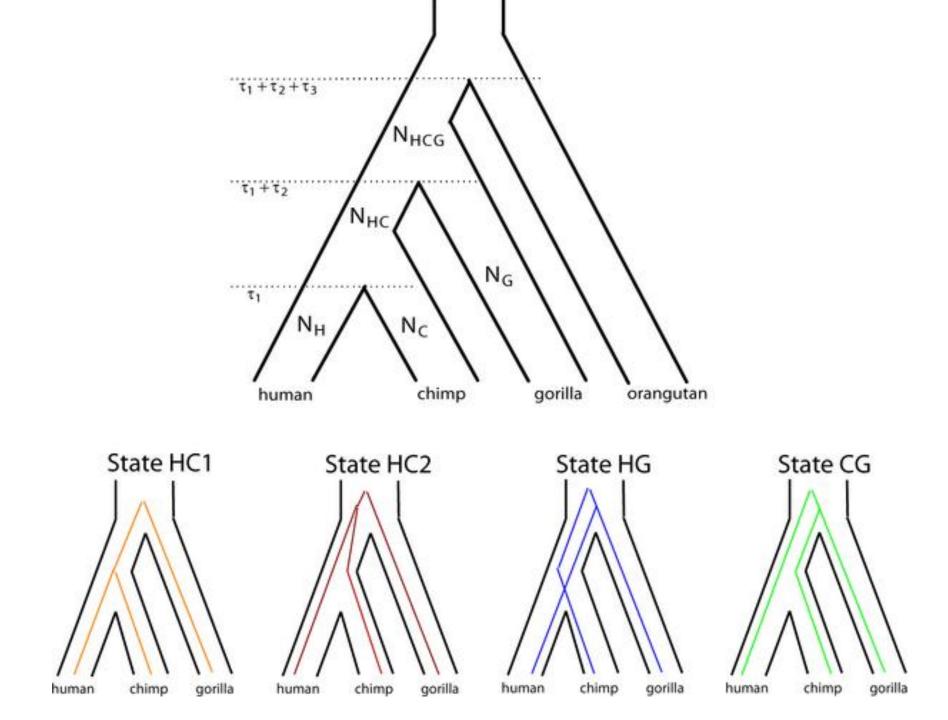
Degrades rapidly

Need more material to get enough

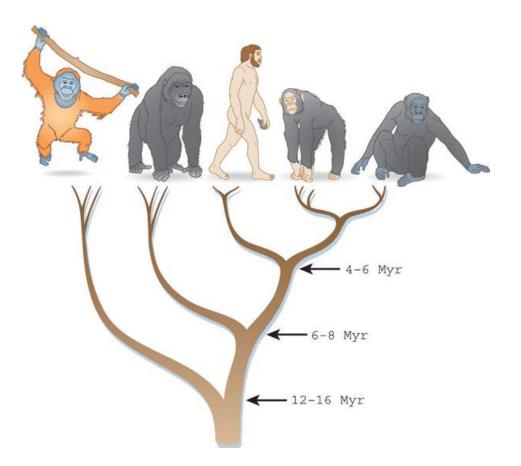
Need multiple tissue to obtain all genes

For amplification, need to convert to DNA first

DNA and RNA need to collected and stored differently

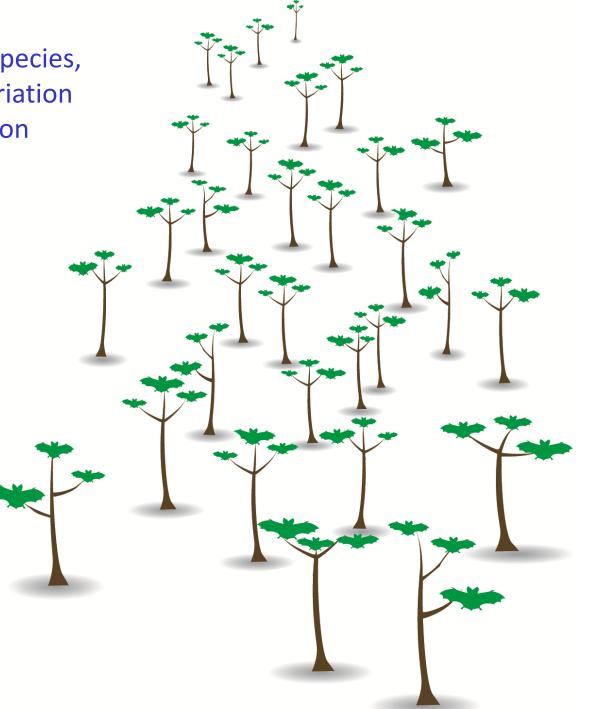

Tissue preservation methods

RNAlater	Liquid nitrogen
100% Ethanol	Dry ice
70% Ethanol	Tissue lysis buffer
Formulin	AllProtect
IMS	Silica gel
VTM	Freezing (-20)
DMSO	Freezing (-80)

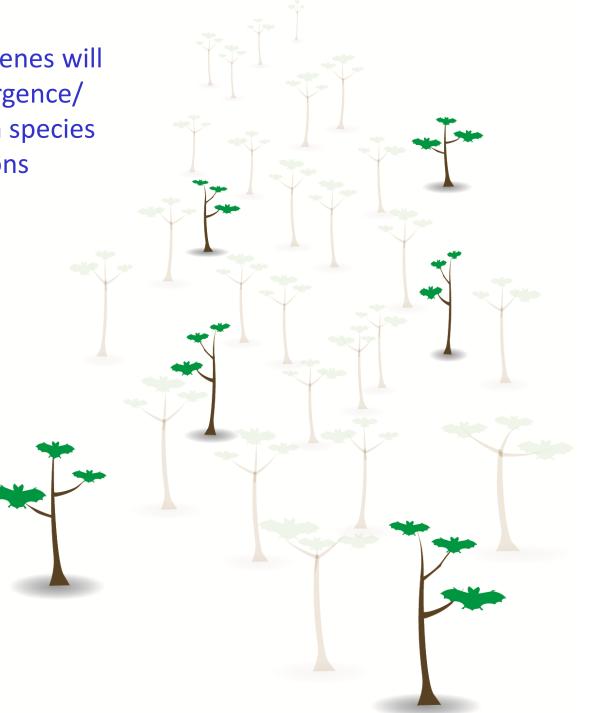

Why do phylogenetic trees sometimes disagree with other datasets?

Why do phylogenetic trees sometimes disagree with other datasets?

1. Incomplete sorting



For 1% of genome, humans more closely related to orang utans than to chimps



Genome Res. 2011 March; 21(3): 349–356.

For sister species, shared variation common

Only a few genes will show divergence/ sorting with species divisions

Why do phylogenetic trees sometimes disagree with other datasets?

1. Incomplete sorting

2. Long branch attraction

Why do phylogenetic trees sometimes disagree with other datasets?

1. Incomplete sorting

- 2. Long branch attraction
- 3. Introgression

Movement of genes from one taxon to another following mating

Previous thought to be uncommon in wild mammals

Now known to be widespread in mammals, incl. bats!

Hybridization between black (*Pteropus alecto*) and grey-headed (*P. poliocephalus*). Webb & Tidemann (1995) Australian Mammalogy, 18, 19-26.

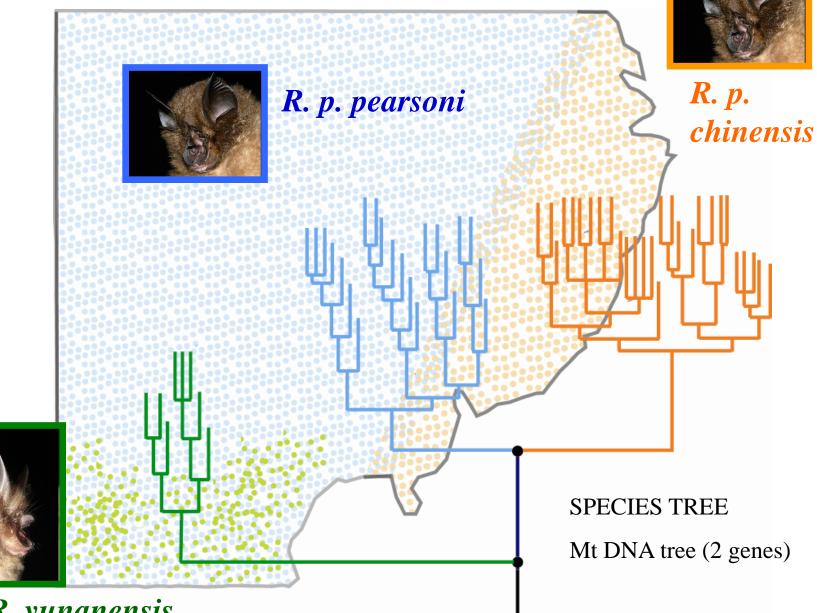
Hybridization in Peters' tent-making bat (*Uroderma bilobatum*: Phyllostomidae). Hoffmann et al (2003) Molecular Ecology, 12, 2981-2993.

Berthier et al (2006) Hybridization between *Myotis myotis* and *Myotis blythii*. Proceedings of the Royal Society B: Biological Science, 273, 3101-3109.

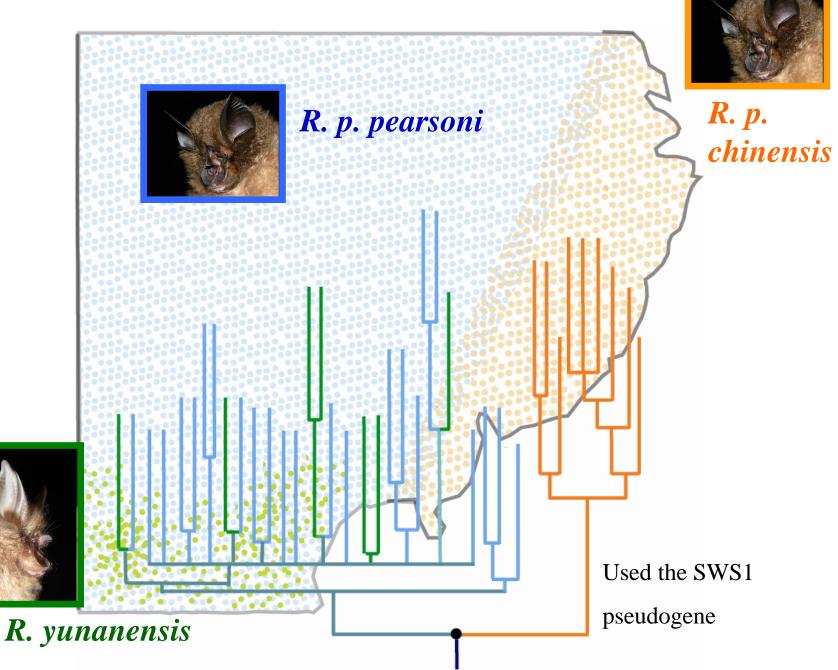
Hulva et al (2010) Hybridisation in the genus *Pipistrellus*. Molecular Ecology, 19, 5417-5431.

Mao et al (2010) Historical hybridisation in *Rhinolophus pearsoni* and *R yunanensis*. Molecular Ecology, 19, 1352-1366.

Mao et al (2010) Hybridisation in *Rhinolophus affinis* subspecies. Molecular Ecology, 19, 2754-2769.

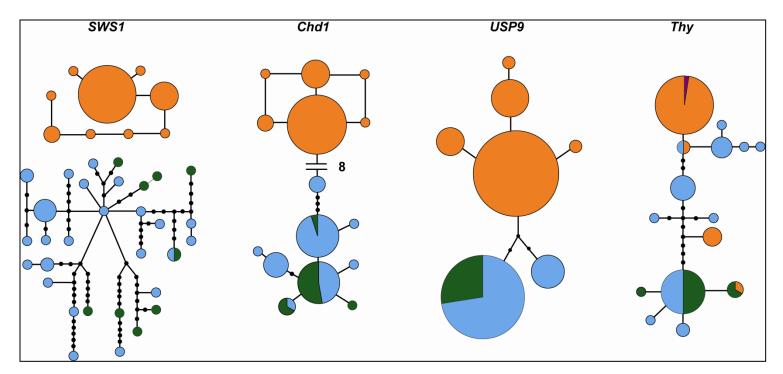

Nesi et al (2011) Possible introgression between *Epomophorus gambianus* and *Micropteropus pusillus* Comptes Rendus Biologies, 334, 544-554.

Example 1: Rhinolophus pearsoni and Rhinolophus yunanensis


R. yunanensis

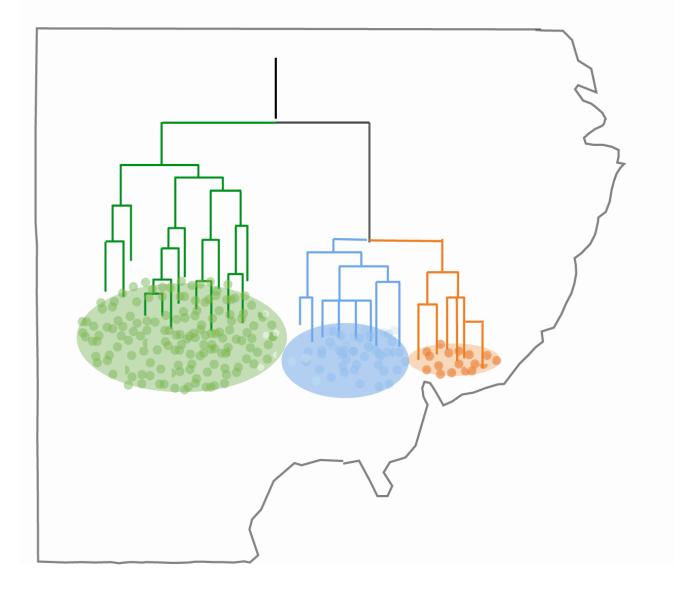
Example 1: Rhinolophus pearsoni and Rhinolophus yunanensis

R. yunanensis

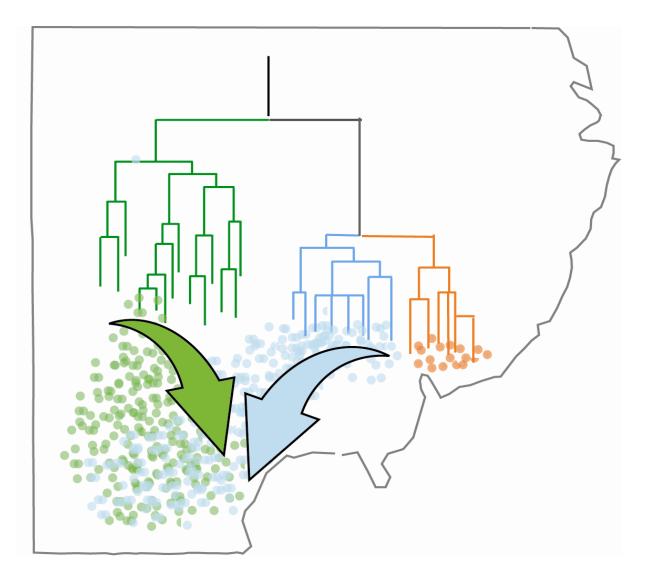

Example 1: Rhinolophus pearsoni and Rhinolophus yunanensis

Nuclear intron networks

R. p. chinensis

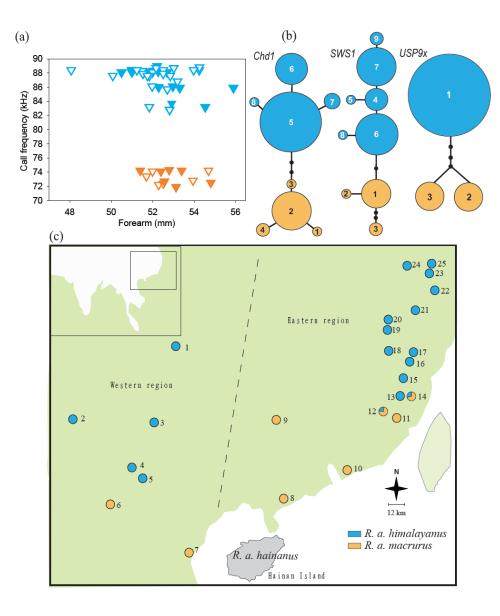


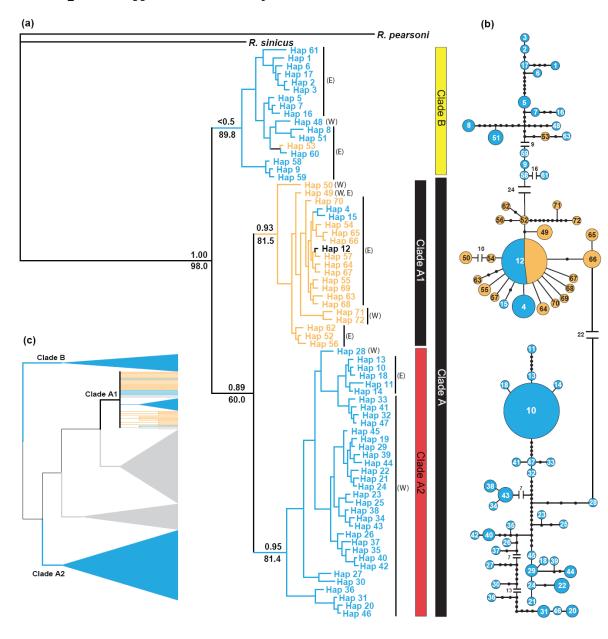
R. yunanensis



R. p. pearsoni

History of the nuclear genes studied


History of the nuclear genes studied


History of the nuclear genes studied

Example 2: Rhinolophus affinis himalayanus and R. a. macrurus

Example 2: Rhinolophus affinis himalayanus and R. a. macrurus

Detecting Introgression

Taxa must have a contact zone or have been in contact in the past

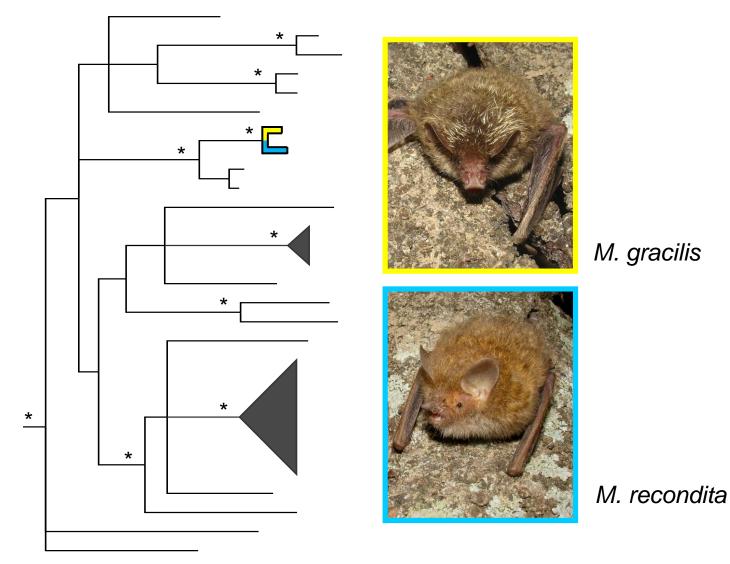
Often a geographical pattern

More commonly detected in mtDNA (barcoding caveat)

More common where one taxon has undergone population expansion

Neutral genes typically flow from resident taxon to the invading taxon

Why do phylogenetic trees sometimes disagree with other datasets?


1. Incomplete sorting

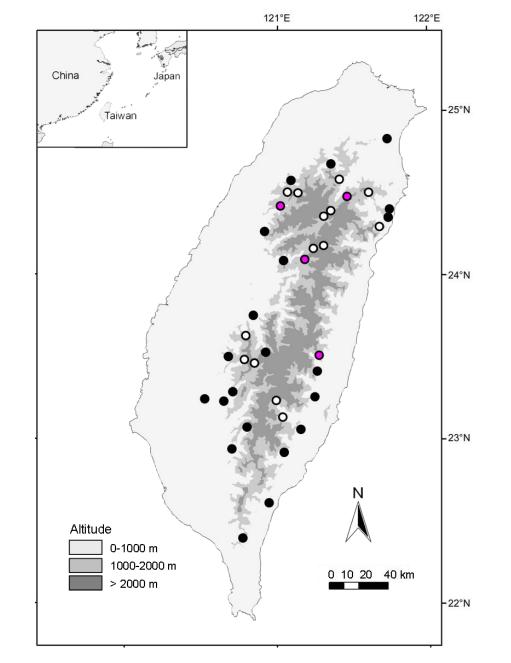
2. Long branch attraction

3. Introgression

4. Homoplasy

Bayesian tree of *Murina* based on mtDNA COI (637 bps)

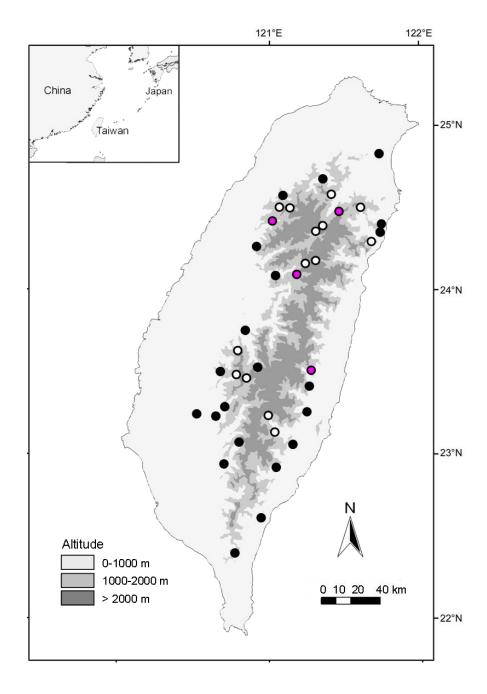
* posterior probability > 0.95

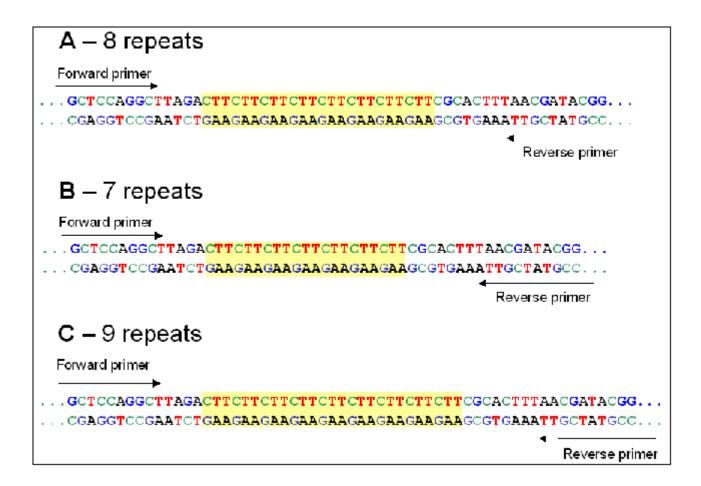


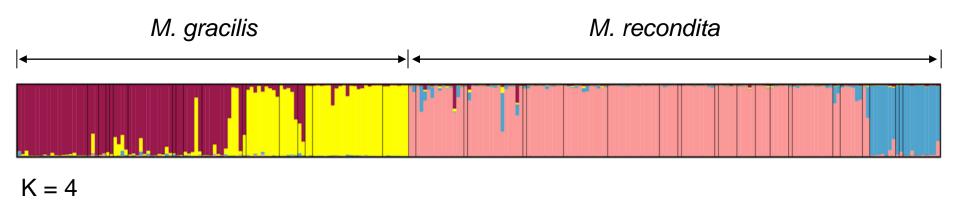
Murina gracilis (O)

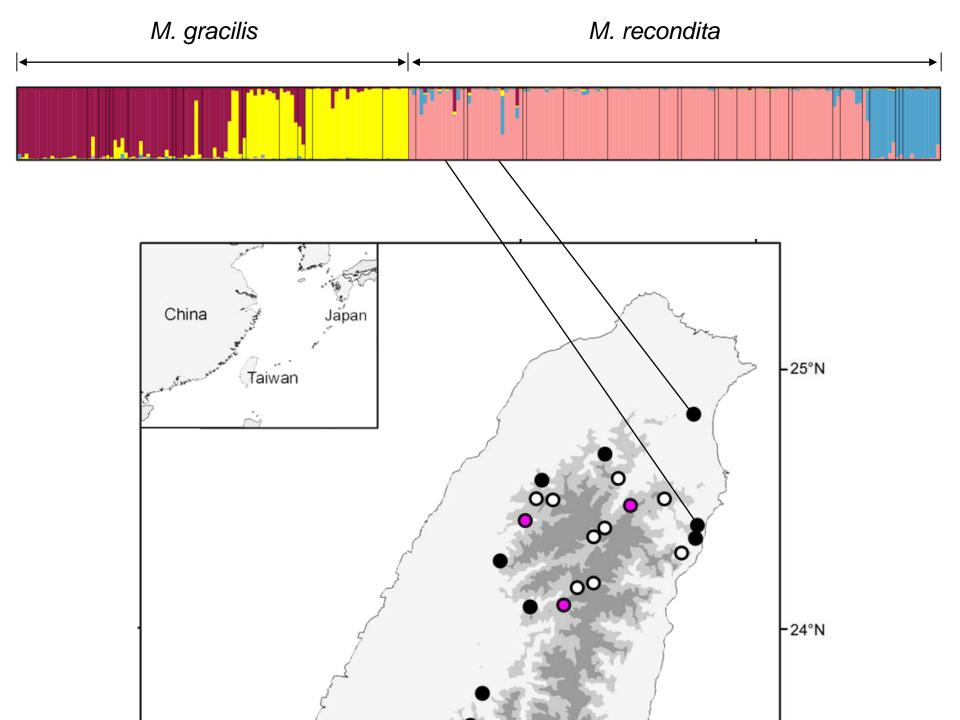
≥ 1500 m ASL

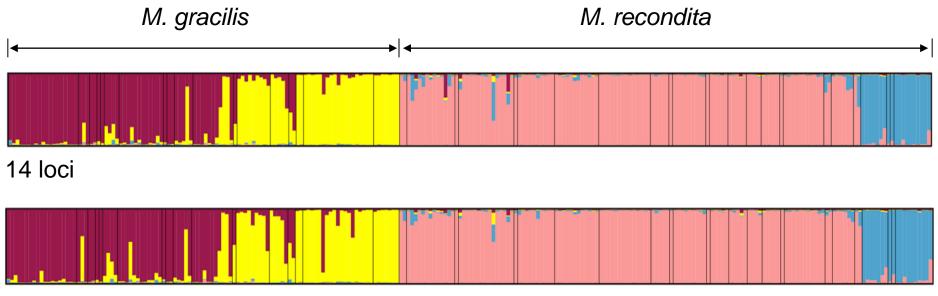
M. recondita (•)

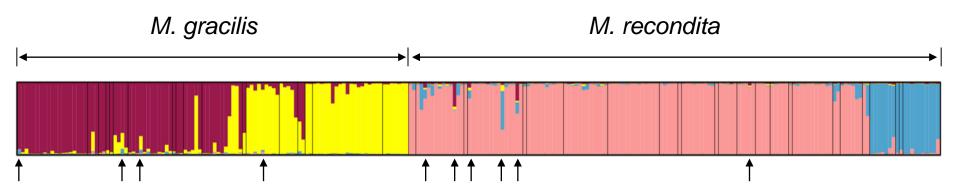

≤ 1500 m ASL

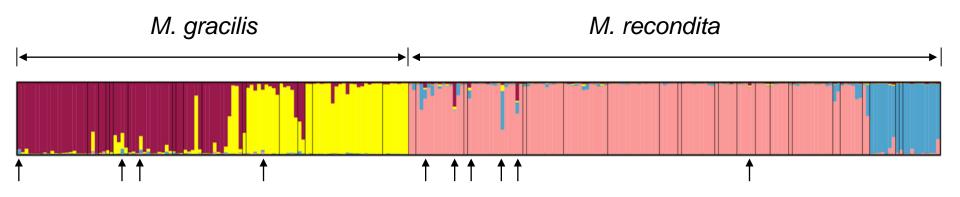





Both species (O)

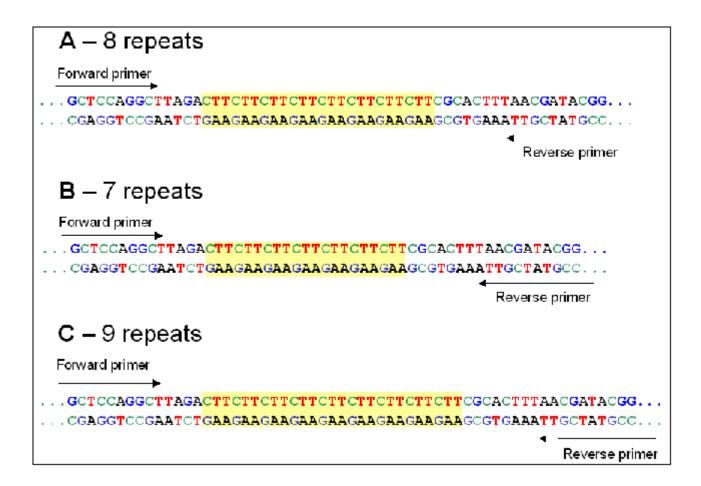

Input: 106 *M. gracilis* 144 *M. recondita* 14 microsatellite loci



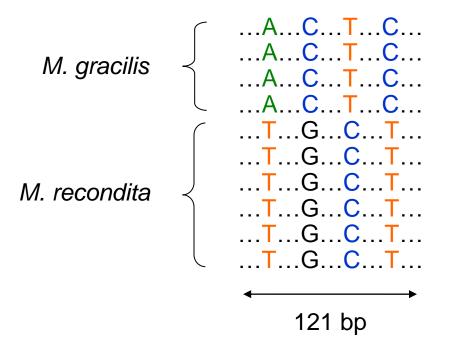


13 loci: without locus "A9"

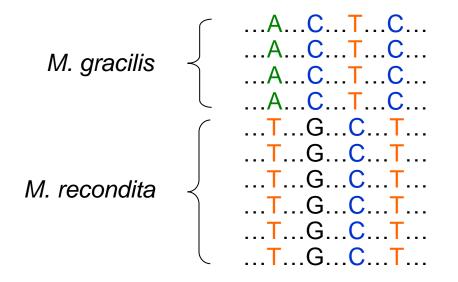
Recent hybridization? Or homoplasy?


Recent hybridization? Or homoplasy?

Sequencing the flanking regions of loci showing mixed ancestry for some individuals ([†]):


Predictions:

If hybridization: some *M. gracilis* will phylogenetically group with *M. recondita*, and vice versa.

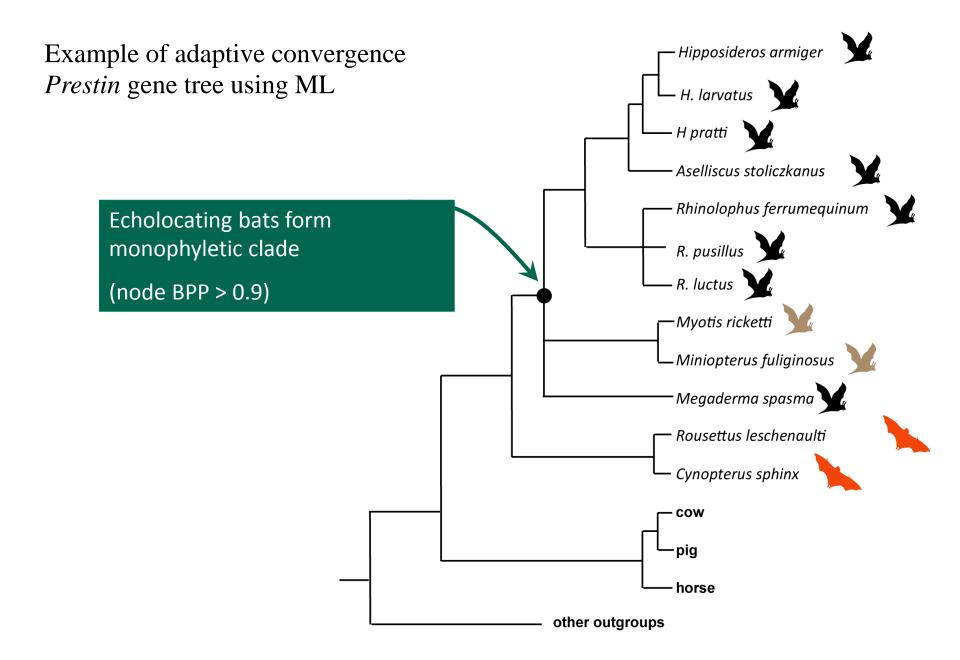

If homoplasy: samples of different species will be phylogenetically separate

Flanker sequencing result for locus "A9"

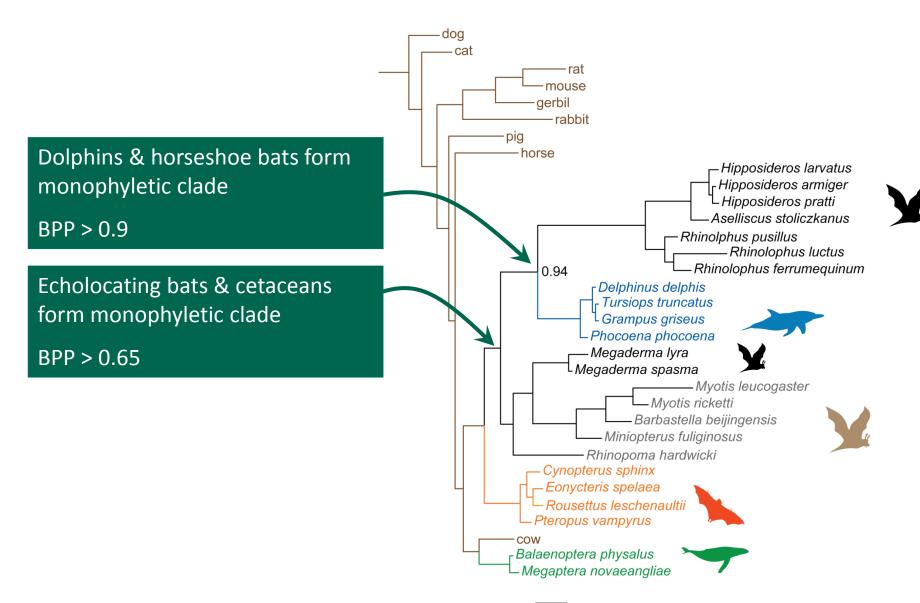
Flanker sequencing result for locus "A9"

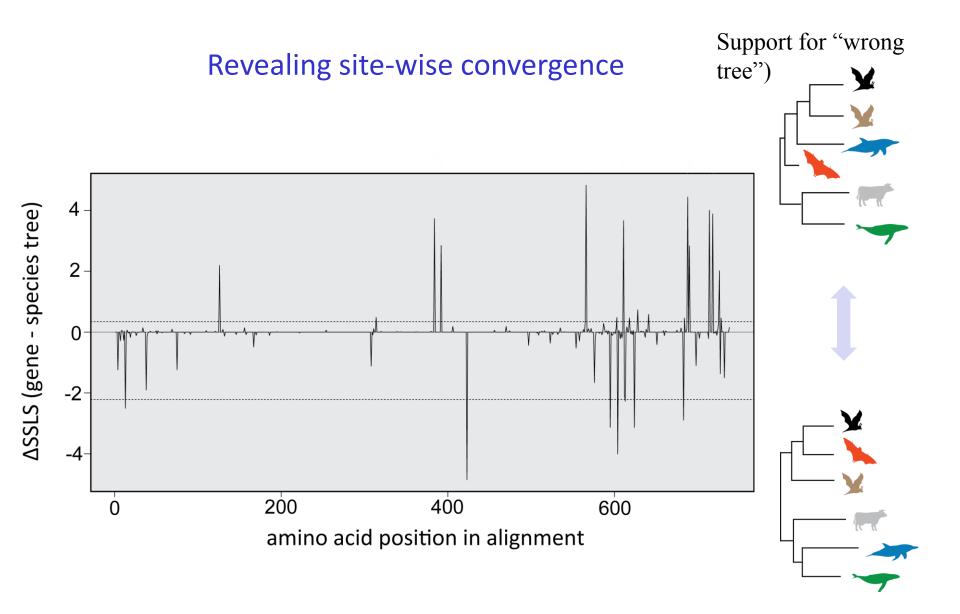
The sequencing result for another locus "A122" (209 bp) is also consistent with the prediction of the allele size homoplasy

Why do phylogenetic trees sometimes disagree with other datasets?

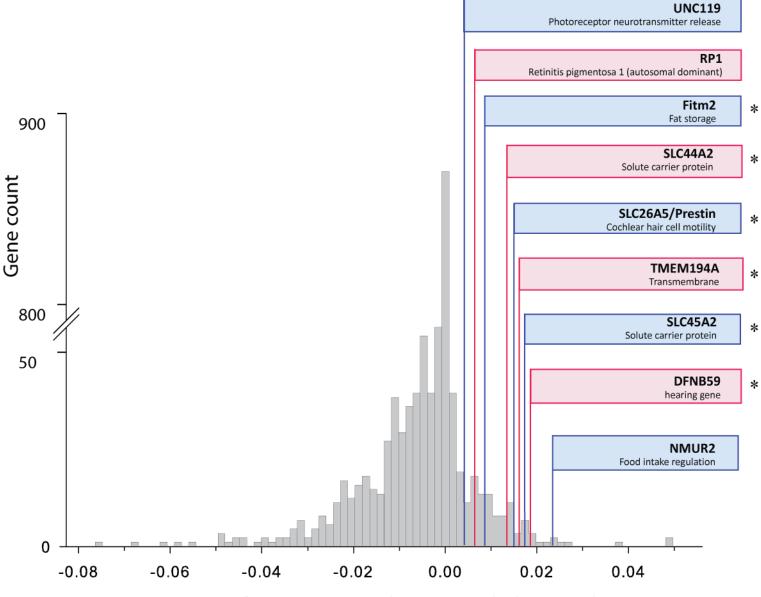

1. Incomplete sorting

2. Long branch attraction


3. Introgression


4. Homoplasy

5. Adaptive convergence


Prestin gene tree using ML

Support for correct tree

Results from 1200 genes

Support for convergence between echolocating bats