Harp Traps, Mist Nets & Acoustic Sampling:

Advantages & Disadvantages

Neil Furey, Iain Mackie & Paul Racey

Mist-Nets

Very lightweight and easy to set up Variable catch area, so good for larger flyways Easily damaged & must be attended constantly Ideal for catching fruit bats (Pteropodidae) Less useful for high-frequency insectivorous bats Trap effort: metres squared, net hours (m²nh)

<u>Harp Traps</u>

Much more robust and heavier, so less portable
Generally small catch area (2-3 m²)
Can be left unattended for short periods, but this is not advisable in caves
Best for catching high-frequency insectivorous bats
Trap effort: metre squared, harp trap hours (m²hth)

Bat Echolocation

'Seeing with sound'

- Species identification
- Ecological studies

Well studied in temperate areas Poorly known in SE Asia

Ground-based trap Acoustic sampling can surveys often fail to overcome this problem catch high flying bats but still largely untested in mainland SE Asia

Above-ground Sample Sites

Each site \geq 8 km apart In larger homogenous areas

Baseline Inventory + Call Data

240 net & 180 harp trap nights

Simultaneous Sampling

14 nights in each habitat

Cave Monitoring

8 nights trapping + acoustic sampling 4 in 2006 and 4 in 2007 (wet season only)

Results: Call Data

1,740 minutes of recordings of free-flying bats

1,260 minutes from above-ground habitats (3)
 480 minutes from An Tinh Cave #1 (ATC#1)

Echolocation calls from 367 bats of 30 species analysed

<u>Family</u>	<u>No. spp.</u>	<u>No. Bats</u>	
Megadermatidae	1	8	
Rhinolophidae	8	122	
Hipposideridae	5	78	
Vespertilionidae	10	81	
Phonic types	6	78	

- one call measured per bat -

Fig.2 Echolocation calls of 31 species of bats at Kim Hy Nature Reserve: a) Pteropodidae, Megadermatidae and Hipposideridae; b) Rhinolophidae; c) Vespertilionidae; and, d) six unidentified phonic types.

Results: Multivariate Analyses

- CF bats Rhinolophids & Hipposiderids = 13 spp./200 calls
 92.0 % of cross-validated calls (184 / 200) correctly classified
 Best Parameters: end frequency, peak frequency & call duration
- **FM bats** Vespertilionids, Megadermatids & six phonic types = 17 spp. /167 calls
 - 86.2 % of cross-validated calls (144 / 167) correctly classified
 - Best parameters: end frequency & peak frequency

Overall, 89.1% of calls correctly classified

Results: Live Traps vs. Acoustic Sampling

	Primary	Disturbed forest	Agriculture / degraded forest	ATC #1	
	forest			2006	2007
Sampling nights	14	14	14	4	4
Live trapping (A)	18	14	10	15	13
Harp traps	11	8	3	13	9
Mist nets	10	11	7	9	8
Acoustic sampling (B)	10	13	13	10	7
Total (A+B)	23	22	19	17	14
% of additional species recorded acoustically	22	36	47	12	7
(A) vs. (A+B) (using nightly average)	p=0.009	p=0.006	p=0.001	p=0.036	

25 spp. in total, 10 only in mist nets, 7 only in harp traps, 8 in both

Overall Increases

Cave sample: From 16 to 18 species (11 %)

Above-ground: From 25 to 35 species (29 %)

All additional species were recorded <u>only</u> by acoustic sampling

Above-Ground Habitats

Simultaneous sampling = 7,296 m²mnh + 490 m²hth

Longer-term trapping = $35,829 \text{ m}^2\text{mnh} + 4,165 \text{ m}^2\text{hth}$

Only 4 more species recorded.....

Summary

Harp traps and mist nets catch different species – both have their advantages and disadvantages

Acoustic identification of free-flying bats is feasible in SE-Asia, but call analysis can be time-consuming - good reference collections of calls are also needed

Acoustic methods record high-flying species that harp trap and mist nets don't, but <u>all</u> of these methods are needed for inventory completeness in assemblage studies

Acoustic sampling is very useful for ecological studies, but is less useful where abundance data is needed

Tunnel trap "Background clutter species"

Mt. Isarog, Luzon Id.

Heaney et al. 1999

Sedlock et al. 2008